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Abstract-We present a novel approach to combining artificial
intelligence components for biomedical signal processing. The
modular algorithm mimics the step-by-step type procedure of a
human expert and includes the two assessment steps most im-
portant for sleep stage scoring, pattern recognition in electro-
physiological signal channels and rule evaluation for classitying
the current sequence of patterns. The application of sleep stage
scoring is a complex task in medical informatics. The AR-
TISANA (artificial intelligence in sleep analysis) algorithm we
have developed provides high rates of correspondence with the
results produced by human experts. Additional features are the
transparent decision-making process and information about the
detailed structure of sleep. This has been achieved by utilizing
neural networks for pattern recognition and neuro-fuzzy sys-
tems for rule evaluation. The Al components chosen to perform
these two classification steps were particularly successful due to
their individual strengths.

Keywords - Neural networks, neuro-fuzzy systems, sleep stage
recognition, artificial intelligence, medical informatics

1. INTRODUCTION

Sleep stage scoring as conceived by Rechtschaffen and
Kales (R&K) [1] is complex, ambiguous and difficult to de-
vise and implement an algorithmic solution using classical
digital signal processing methods for. Nonetheless, it is the
core task necessary for the evaluation of polysomnography
[2.3]. In R&K’s methodology, a human expert performs two
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Fig. 1. Visual sleep stage scoring

major classification steps as illustrated in Fig. 1: recognition
of basic patterns in the 5 signal channels (2 EEG, 2 EOG and
EMG) and scoring the current sleep stage based on the se-
quence of the detected sleep patterns.

The sleep-related patterns which have to be detected in
the first step can be distinguished as either periodic (alpha-,
theta- and delta- activity) or transient (K-complexes, sleep
spindles, vertex sharp waves, rapid / slow eye movements
and body movements). A rough idea of the graphical illustra-
tion of common wave patterns is presented in [1] but such
pattern recognition is primarily based on the expert’s experi-
ence and knowledge about typical waveforms. The second
step consists of an evaluation of the rules defined by R&K.
For both assessment steps there is room for personal interpre-
tation leading to an interrater agreement as low as 50-70% in
patients with Obstructive Sleep Apnea (OSA) [4].

The ARTISANA algorithm represents the detailed model-
ing of the described procedure as shown in Fig. 2. Artificial
intelligence components were implemented to execute the
two classification stages. They were designed to optimize
both the quality and transparency of the calculated results. An
initial validation of the results emphasized the potential of the
system to overcome current shortcomings in automated sleep
stage scoring algorithms which have been used less fre-
quently than hoped in upper-grade clinical practice.
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Several applications with similar processing steps for elec-
trophysiological signals exist, €.g. ECG classification which
can trigger an alarm in high risk situations.

II. METHODOLOGY
A. Pattern Recognition

Examples of EEG, EOG and EMG sleep-related patterns
are illustrated in Fig. 1. Alpha, theta and delta activity are
periodic signals and can be identified by their amplitude and
frequency ranges [1]. The waveforms differ between patients
and due to crosstalk, noise or combined mixed-frequency
activity. The detection of these periodic EEG signals is based
on parameters which are extracted from their course in 1 s
intervals.

K complexes, sleep spindles and vertex sharp waves are
transient patterns with isolated incidences and can be roughly
described by their typical shapes. Thus, their detection in the
ARTISANA algorithm is based on a combination of calcu-
lated, shape describing parameters and direct waveforms. An
approach with solely direct recognition did not provide suffi-
cient results. Regarding eye movements, additional parame-
ters were defined, identifying the antiparallel course of the
two EOG channels.

The classification task itself is performed by artificial
neural networks of the Multi-Layer-Perceptron (MLP) type
[5]. Resilient Propagation (RPROP) was applied as a training
procedure. The activation of a specific output neuron pro-
vides information about the corresponding membership grade
of the currently assessed interval which belongs to the asso-
ciated pattern class.

Neural networks adapt themselves to typical structures in
their input vectors during a supervised learning procedure.
The expert’s recognition experience is transferred to the
automatic system with the accessible prior knowledge (fre-
quency ranges, amplitude ranges and wave patterns) imple-
mented into the input vector and the structure of the network.

B. The Context Layer

The sleep stage of a current interval not only depends on
the sequence of patterns within the interval itself, but also on
a certain time window. Thus, a context layer provides all per-
tinent information about preceding and succeeding patterns to
the final decision stage, which is necessary to evaluate the
rules of R&K. An example of contextual information is the
time (in s) since the last rapid eye movement or K complex.

C. Rule Evaluation

The rule evaluation stage consists of a hybrid neuro-fuzzy
system which mimics the definitions of R&K in predefined
IF-THEN rules. During the supervised learning phase, the
fuzzy membership functions in the premise parts of the rules
are adapted. The NEFCLASS algorithm [6], consisting of
triangular membership functions and a selective rule-based
adaptation process, is used.
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Finally, a defuzzification stage identifies the sleep stage
for each 30 s epochs using maximum search and summation
of the seven membership grades of the 1 s intervals for the
corresponding sleep stages.

D. Initial Validation

The learning procedure for the adaptive systems in pattern
recognition and rule evaluation was based on the training and
validation sets of 4 polysomnographic records of healthy sub-
jects each. In order to proof the validity of the concept em-
ployed, an evaluation of the adapted system was performed
using the data on 8 OSA patients.

The data was recorded and manually assessed at the Uni-
versity Hospital of Marburg, Germany. The sampling fre-
quency was 200 Hz. Channels C3A2 and C4Al for EEG,
E1A1l and E2A2 for EOG were used, as well as the EMG
chin lead. For each data set, a sequence of 9 990 s was as-
sessed by the automatic system.

III. RESULTS

An example of an automatically assessed hypnogram in
comparison to a manually assessed hypnogram is shown in
Fig. 3. In this diagram, the agreement rate was 84.6 % of the
30 s epochs. The average value was 70.7 % for OSA patients
and 79.8 % for healthy subjects. Detailed results of the
matching of single sleep stages are given in Tab. 1. Quality
of pattern recognition was also high. The pattern class that
was detected, as well as most active fuzzy classification rules
can be visualized for the human expert in the form of inter-
mediate results that duplicate the system’s decision. An ex-
ample can be seen in Fig. 4.

IV. DISCUSSION

The first validating results of the ARTISANA concept
underline the potential of self-learning systems for biomedi-
cal signal processing. Nonetheless mismatches in manual and
automatic sleep stage identification, especially in regards to
the Wake- and Non-Wake stages, are typical for OSA pa-
tients [4] and can predominantly be explained by frequent
arousals. The sleep is fragmented in intervals of Wake and
light sleep stages or even REM sleep with a duration of only
a few seconds. Thus, the identification of a dominant sleep
stage for 30 s is often very complex.

TABLE I
CLASSIFICATION OF MANUALLY ASSESSED 30 S EPOCHS BY THE AUTO-
MATIC SYSTEM IN OSA PATIENTS

manual automatic
Wake REM NREM1 NREM2 NREM3 NREM4

Wake 829 5 65 49 1 0
REM 9 115 3 18 0 0
NREM 1 104 11 139 186 1 0
NREM 2 37 35 153 649 10 0
NREM 3 8 0 0 47 51 1
NREM 4 0 0 0 7 30 101
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Fig. 3. Manually and automatically assessed sleep classification of an
OSA patient

One can not definitely decide which classification is ‘cor-
rect’ or ‘incorrect’, a fact which is easily attested to when
regarding the variations between different human scorers.
There is room for variation and error in both manual and
automatic results.

The modular structure of the ARTISANA algorithm and
the utilization of Al components mimic the procedure a hu-
man expert would go through to achieve the same results.
Intermediate results can be visualized to illustrate the micro-
structure of sleep. One of the major advantages of our ap-
proach is the ability to preserve this data. It is lost when using
a single-step ‘blackbox’ algorithm. A specific extraction of
decisive parameters and the detection of the complete set of
sleep-related patterns, as well as the consideration of all the
relevant time windows represent the maximum implementa-
tion of prior knowledge about the classification process to
improve the performance of knowledge-based systems.

Artificial neural networks and neuro-fuzzy systems sub-
stantially differ in terms of transparency and calculation
complexity. Neuro-fuzzy systems consist of logic rules simi-
lar to an expert system; they can be predefined and duplicated
by a human expert to guarantee fundamental behavior which
is based upon well-accepted medical assessment definitions.
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In sleep stage recognition, they mimic the manual methodol-
ogy of R&K. The major advantage of a neuro-fuzzy system
compared to an expert system is the self-learning capacity
which enables the neuro-fuzzy network to adapt itself to op-
timized input parameter ranges.

Neural networks comprise a more complex mathematical
combination of input parameters using different layers of
interacting neurons. With several powerful learning algo-
rithms they can adapt themselves to typical structures in the
input space. Implementation of prior knowledge is reduced to
selecting input vectors and the topology of the network. The
application of neural networks was selected for the recogni-
tion of sleep-related patterns because of their lack of detailed
identification rules.

The optimization of input vectors is difficult for both types
of Al systems, because classical statistics approaches which
try to identify independent explanation factors do not reflect
connectionist reasoning. This will be a focus of further im-
provement of the ARTISANA algorithm. We will also try to
define improved neuro-fuzzy learning rules, since several
existing systems including NEFCLASS showed weaknesses
in regards to convergence. A final training and evaluation
procedure with a large number of manually classified sam-
ples will provide robustness and detailed validation for the
optimized system.

V. CONCLUSION

As a combination of Al components, ARTISANA showed
a high potential for performing the complex biosignal proc-
essing task of sleep stage recognition. Neural networks and
neuro-fuzzy systems were utilized regarding their specific
advantages in the area of pattern recognition and rule evalua-
tion. A high rate of agreement with human scorers and the
provision of intermediate results, which help to understand
the system’s scoring decisions, as well as the sleep micro-
structure should improve the acceptance of automated sys-
tems in clinical practice.
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